Radio Astronomers
   HOME

TheInfoList



OR:

Radio astronomy is a subfield of
astronomy Astronomy () is a natural science that studies astronomical object, celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and chronology of the Universe, evolution. Objects of interest ...
that studies
celestial objects An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists in the observable universe. In astronomy, the terms ''object'' and ''body'' are often us ...
at
radio frequencies Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around . This is roughly between the upper ...
. The first detection of radio waves from an astronomical object was in 1933, when
Karl Jansky Karl Guthe Jansky (October 22, 1905 – February 14, 1950) was an American physicist and radio engineer who in April 1933 first announced his discovery of radio waves emanating from the Milky Way in the constellation Sagittarius. He is considere ...
at
Bell Telephone Laboratories Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by mul ...
reported radiation coming from the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye ...
. Subsequent observations have identified a number of different sources of radio emission. These include
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
s and
galaxies A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. ...
, as well as entirely new classes of objects, such as
radio galaxies A radio galaxy is a galaxy with giant regions of radio emission extending well beyond its visible structure. These energetic radio lobes are powered by jets from its active galactic nucleus. They have luminosities up to 1039  W at radio wav ...
,
quasar A quasar is an extremely Luminosity, luminous active galactic nucleus (AGN). It is pronounced , and sometimes known as a quasi-stellar object, abbreviated QSO. This emission from a galaxy nucleus is powered by a supermassive black hole with a m ...
s,
pulsar A pulsar (from ''pulsating radio source'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Ea ...
s, and
masers A maser (, an acronym for microwave amplification by stimulated emission of radiation) is a device that produces coherent electromagnetic waves through amplification by stimulated emission. The first maser was built by Charles H. Townes, James ...
. The discovery of the
cosmic microwave background radiation In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
, regarded as evidence for the
Big Bang theory The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
, was made through radio astronomy. Radio astronomy is conducted using large
radio antennas In radio engineering, an antenna or aerial is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies a ...
referred to as
radio telescope A radio telescope is a specialized antenna and radio receiver used to detect radio waves from astronomical radio sources in the sky. Radio telescopes are the main observing instrument used in radio astronomy, which studies the radio frequency ...
s, that are either used singularly, or with multiple linked telescopes utilizing the techniques of
radio interferometry An astronomical interferometer or telescope array is a set of separate telescopes, mirror segments, or radio telescope antennas that work together as a single telescope to provide higher resolution images of astronomical objects such as stars, ne ...
and
aperture synthesis Aperture synthesis or synthesis imaging is a type of interferometry that mixes signals from a collection of telescopes to produce images having the same angular resolution as an instrument the size of the entire collection. At each separation an ...
. The use of interferometry allows radio astronomy to achieve high
angular resolution Angular resolution describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object, thereby making it a major determinant of image resolution. ...
, as the resolving power of an interferometer is set by the distance between its components, rather than the size of its components. Radio astronomy differs from ''
radar astronomy Radar astronomy is a technique of observing nearby astronomical objects by reflecting radio waves or microwaves off target objects and analyzing their reflections. Radar astronomy differs from ''radio astronomy'' in that the latter is a passive o ...
'' in that the former is a passive observation (i.e., receiving only) and the latter an active one (transmitting and receiving).


History

Before Jansky observed the Milky Way in the 1930s, physicists speculated that radio waves could be observed from astronomical sources. In the 1860s,
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
's
equations In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for example, in F ...
had shown that
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, inf ...
is associated with
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described ...
and
magnetism Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particles ...
, and could exist at any
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
. Several attempts were made to detect radio emission from the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
including an experiment by German astrophysicists
Johannes Wilsing Johannes Wilsing (8 September 1856 – 23 December 1943) was a German astronomer. He was born in Berlin, where he was educated in addition to Göttingen Göttingen (, , ; nds, Chöttingen) is a university city in Lower Saxony, central ...
and
Julius Scheiner Julius Scheiner (25 November 1858 – 20 December 1913) was a German astronomer, born in Cologne and educated at Bonn. He became assistant at the astrophysical observatory in Potsdam in 1887 and its observer in chief in 1898, three years after h ...
in 1896 and a centimeter wave radiation apparatus set up by
Oliver Lodge Sir Oliver Joseph Lodge, (12 June 1851 – 22 August 1940) was a British physicist and writer involved in the development of, and holder of key patents for, radio. He identified electromagnetic radiation independent of Heinrich Rudolf Hertz, H ...
between 1897 and 1900. These attempts were unable to detect any emission due to technical limitations of the instruments. The discovery of the radio reflecting
ionosphere The ionosphere () is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an ...
in 1902, led physicists to conclude that the layer would bounce any astronomical radio transmission back into space, making them undetectable.
Karl Jansky Karl Guthe Jansky (October 22, 1905 – February 14, 1950) was an American physicist and radio engineer who in April 1933 first announced his discovery of radio waves emanating from the Milky Way in the constellation Sagittarius. He is considere ...
made the discovery of the first astronomical radio source
serendipitously Serendipity is an unplanned fortunate discovery. Serendipity is a common occurrence throughout the history of product invention and scientific discovery. Etymology The first noted use of "serendipity" was by Horace Walpole on 28 January 1754. I ...
in the early 1930s. As a newly hired radio engineer with
Bell Telephone Laboratories Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by mul ...
, he was assigned the task to investigate static that might interfere with
short wave Shortwave radio is radio transmission using shortwave (SW) radio frequencies. There is no official definition of the band, but the range always includes all of the High frequency, high frequency band (HF), which extends from 3 to 30 MHz (10 ...
transatlantic voice transmissions. Using a large
directional antenna A directional antenna or beam antenna is an antenna which radiates or receives greater power in specific directions allowing increased performance and reduced interference from unwanted sources. Directional antennas provide increased performance ...
, Jansky noticed that his
analog Analog or analogue may refer to: Computing and electronics * Analog signal, in which information is encoded in a continuous variable ** Analog device, an apparatus that operates on analog signals *** Analog electronics, circuits which use analog ...
pen-and-paper recording system kept recording a persistent repeating signal or "hiss" of unknown origin. Since the signal peaked about every 24 hours, Jansky first suspected the source of the interference was the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
crossing the view of his directional antenna. Continued analysis, however, showed that the source was not following the 24-hour daily cycle of the Sun exactly, but instead repeating on a cycle of 23 hours and 56 minutes. Jansky discussed the puzzling phenomena with his friend, astrophysicist Albert Melvin Skellett, who pointed out that the observed time between the signal peaks was the exact length of a
sidereal day Sidereal time (as a unit also sidereal day or sidereal rotation period) (sidereal ) is a timekeeping system that astronomers use to locate celestial objects. Using sidereal time, it is possible to easily point a telescope to the proper coord ...
; the time it took for "fixed" astronomical objects, such as a star, to pass in front of the antenna every time the Earth rotated. By comparing his observations with optical astronomical maps, Jansky eventually concluded that the radiation source peaked when his antenna was aimed at the densest part of the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye ...
in the
constellation A constellation is an area on the celestial sphere in which a group of visible stars forms Asterism (astronomy), a perceived pattern or outline, typically representing an animal, mythological subject, or inanimate object. The origins of the e ...
of Sagittarius. Jansky announced his discovery at a meeting in Washington D.C. in April 1933 and the field of radio astronomy was born. In October 1933, his discovery was published in a journal article entitled "Electrical disturbances apparently of extraterrestrial origin" in the ''
Proceedings of the Institute of Radio Engineers The ''Proceedings of the IEEE'' is a monthly peer-reviewed scientific journal published by the Institute of Electrical and Electronics Engineers (IEEE). The journal focuses on electrical engineering and computer science. According to the ''Jo ...
''. Jansky concluded that since the Sun (and therefore other stars) were not large emitters of radio noise, the strange radio interference may be generated by interstellar gas and dust in the galaxy, in particular, by "thermal agitation of charged particles." (Jansky's peak radio source, one of the brightest in the sky, was designated
Sagittarius A Sagittarius A (Sgr A) is a complex radio source at the center of the Milky Way, which contains a supermassive black hole. It is located in the constellation Sagittarius, and is hidden from view at optical wavelengths by large clouds of ...
in the 1950s and was later hypothesized to be emitted by
electrons The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
in a strong magnetic field. Current thinking is that these are ions in orbit around a massive
Black hole A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
at the center of the galaxy at a point now designated as Sagittarius A*. The asterisk indicates that the particles at Sagittarius A are ionized.) After 1935, Jansky wanted to investigate the radio waves from the Milky Way in further detail, but Bell Labs reassigned him to another project, so he did no further work in the field of astronomy. His pioneering efforts in the field of radio astronomy have been recognized by the naming of the fundamental unit of
flux density Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport ph ...
, the
jansky The jansky (symbol Jy, plural ''janskys'') is a non- SI unit of spectral flux density, or spectral irradiance, used especially in radio astronomy. It is equivalent to 10−26 watts per square metre per hertz. The ''flux density'' or ''mono ...
(Jy), after him.
Grote Reber Grote Reber (December 22, 1911 – December 20, 2002) was an American pioneer of radio astronomy, which combined his interests in amateur radio and amateur astronomy. He was instrumental in investigating and extending Karl Jansky's pioneering wo ...
was inspired by Jansky's work, and built a parabolic radio telescope 9m in diameter in his backyard in 1937. He began by repeating Jansky's observations, and then conducted the first sky survey in the radio frequencies. On February 27, 1942,
James Stanley Hey James Stanley Hey (3 May 1909 – 27 February 2000) was an English physicist and radio astronomer. With the targeted application of radar technology for astronomical research, he laid the basis for the development of radio astronomy. While work ...
, a
British Army The British Army is the principal land warfare force of the United Kingdom, a part of the British Armed Forces along with the Royal Navy and the Royal Air Force. , the British Army comprises 79,380 regular full-time personnel, 4,090 Gurk ...
research officer, made the first detection of radio waves emitted by the Sun. Later that year
George Clark Southworth George Clark Southworth (August 24, 1890 – July 6, 1972), who published as G. C. Southworth, was a prominent American radio engineer best known for his role in the development of waveguides in the early 1930s. Biography Southworth was born in ...
, at
Bell Labs Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by mult ...
like Jansky, also detected radiowaves from the Sun. Both researchers were bound by wartime security surrounding radar, so Reber, who was not, published his 1944 findings first. Several other people independently discovered solar radio waves, including
E. Schott E is the fifth letter of the Latin alphabet. E or e may also refer to: Commerce and transportation * €, the symbol for the euro, the European Union's standard currency unit * ℮, the estimated sign, an EU symbol indicating that the weigh ...
in
Denmark ) , song = ( en, "King Christian stood by the lofty mast") , song_type = National and royal anthem , image_map = EU-Denmark.svg , map_caption = , subdivision_type = Sovereign state , subdivision_name = Danish Realm, Kingdom of Denmark ...
and Elizabeth Alexander working on
Norfolk Island Norfolk Island (, ; Norfuk: ''Norf'k Ailen'') is an external territory of Australia located in the Pacific Ocean between New Zealand and New Caledonia, directly east of Australia's Evans Head and about from Lord Howe Island. Together with ...
. At
Cambridge University , mottoeng = Literal: From here, light and sacred draughts. Non literal: From this place, we gain enlightenment and precious knowledge. , established = , other_name = The Chancellor, Masters and Schola ...
, where ionospheric research had taken place during
World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the vast majority of the world's countries—including all of the great powers—forming two opposin ...
, J.A. Ratcliffe along with other members of the
Telecommunications Research Establishment The Telecommunications Research Establishment (TRE) was the main United Kingdom research and development organization for radio navigation, radar, infra-red detection for heat seeking missiles, and related work for the Royal Air Force (RAF) d ...
that had carried out wartime research into
radar Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, w ...
, created a radiophysics group at the university where radio wave emissions from the Sun were observed and studied. This early research soon branched out into the observation of other celestial radio sources and interferometry techniques were pioneered to isolate the angular source of the detected emissions.
Martin Ryle Sir Martin Ryle (27 September 1918 – 14 October 1984) was an English radio astronomer who developed revolutionary radio telescope systems (see e.g. aperture synthesis) and used them for accurate location and imaging of weak radio source ...
and
Antony Hewish Antony Hewish (11 May 1924 – 13 September 2021) was a British radio astronomer who won the Nobel Prize for Physics in 1974 (together with fellow radio-astronomer Martin Ryle) for his role in the discovery of pulsars. He was also awarded the ...
at the
Cavendish Astrophysics Group The Cavendish Astrophysics Group (formerly the Radio Astronomy Group) is based at the Cavendish Laboratory at the University of Cambridge. The group operates all of the telescopes at the Mullard Radio Astronomy Observatory except for the 32m MERLI ...
developed the technique of Earth-rotation
aperture synthesis Aperture synthesis or synthesis imaging is a type of interferometry that mixes signals from a collection of telescopes to produce images having the same angular resolution as an instrument the size of the entire collection. At each separation an ...
. The radio astronomy group in Cambridge went on to found the
Mullard Radio Astronomy Observatory The Mullard Radio Astronomy Observatory (MRAO) is located near Cambridge, UK and is home to a number of the largest and most advanced aperture synthesis radio telescopes in the world, including the One-Mile Telescope, 5-km Ryle Telescope, and ...
near Cambridge in the 1950s. During the late 1960s and early 1970s, as computers (such as the
Titan Titan most often refers to: * Titan (moon), the largest moon of Saturn * Titans, a race of deities in Greek mythology Titan or Titans may also refer to: Arts and entertainment Fictional entities Fictional locations * Titan in fiction, fictiona ...
) became capable of handling the computationally intensive
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, ...
inversions required, they used aperture synthesis to create a 'One-Mile' and later a '5 km' effective aperture using the One-Mile and Ryle telescopes, respectively. They used the
Cambridge Interferometer {{Infobox telescope The Cambridge Interferometer was a radio telescope interferometer built by Martin Ryle and Antony Hewish in the early 1950s to the west of Cambridge (between the Grange Road football ground and the current Cavendish Laboratory) ...
to map the radio sky, producing the
Second The second (symbol: s) is the unit of time in the International System of Units (SI), historically defined as of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds ...
(2C) and
Third Third or 3rd may refer to: Numbers * 3rd, the ordinal form of the cardinal number 3 * , a fraction of one third * Second#Sexagesimal divisions of calendar time and day, 1⁄60 of a ''second'', or 1⁄3600 of a ''minute'' Places * 3rd Street (d ...
(3C) Cambridge Catalogues of Radio Sources.


Techniques

Radio astronomers use different techniques to observe objects in the radio spectrum. Instruments may simply be pointed at an energetic radio source to analyze its emission. To "image" a region of the sky in more detail, multiple overlapping scans can be recorded and pieced together in a
mosaic A mosaic is a pattern or image made of small regular or irregular pieces of colored stone, glass or ceramic, held in place by plaster/mortar, and covering a surface. Mosaics are often used as floor and wall decoration, and were particularly pop ...
image. The type of instrument used depends on the strength of the signal and the amount of detail needed. Observations from the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
's surface are limited to wavelengths that can pass through the atmosphere. At low frequencies or long wavelengths, transmission is limited by the
ionosphere The ionosphere () is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an ...
, which reflects waves with frequencies less than its characteristic
plasma frequency Plasma oscillations, also known as Langmuir waves (after Irving Langmuir), are rapid oscillations of the electron density in conducting media such as plasmas or metals in the ultraviolet region. The oscillations can be described as an instability i ...
.
Water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a ...
vapor In physics, a vapor (American English) or vapour (British English and Canadian English; American and British English spelling differences#-our, -or, see spelling differences) is a substance in the gas phase at a temperature lower than its critic ...
interferes with radio astronomy at higher frequencies, which has led to building radio observatories that conduct observations at
millimeter 330px, Different lengths as in respect to the electromagnetic spectrum, measured by the metre and its derived scales. The microwave is between 1 meter to 1 millimeter. The millimetre (American and British English spelling differences#-re, -er, ...
wavelengths at very high and dry sites, in order to minimize the water vapor content in the line of sight. Finally, transmitting devices on Earth may cause
radio-frequency interference Electromagnetic interference (EMI), also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electros ...
. Because of this, many radio observatories are built at remote places.


Radio telescopes

Radio telescopes may need to be extremely large in order to receive signals with low
signal-to-noise ratio Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in deci ...
. Also since
angular resolution Angular resolution describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object, thereby making it a major determinant of image resolution. ...
is a function of the diameter of the "
objective Objective may refer to: * Objective (optics), an element in a camera or microscope * ''The Objective'', a 2008 science fiction horror film * Objective pronoun, a personal pronoun that is used as a grammatical object * Objective Productions, a Brit ...
" in proportion to the wavelength of the electromagnetic radiation being observed, ''
radio telescope A radio telescope is a specialized antenna and radio receiver used to detect radio waves from astronomical radio sources in the sky. Radio telescopes are the main observing instrument used in radio astronomy, which studies the radio frequency ...
s'' have to be much larger in comparison to their
optical Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviole ...
counterparts. For example, a 1-meter diameter optical telescope is two million times bigger than the wavelength of light observed giving it a resolution of roughly 0.3
arc second A minute of arc, arcminute (arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to of one degree. Since one degree is of a turn (or complete rotation), one minute of arc is of a turn. The na ...
s, whereas a radio telescope "dish" many times that size may, depending on the wavelength observed, only be able to resolve an object the size of the full moon (30 minutes of arc).


Radio interferometry

The difficulty in achieving high resolutions with single radio telescopes led to radio
interferometry Interferometry is a technique which uses the ''interference'' of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber opt ...
, developed by British radio astronomer
Martin Ryle Sir Martin Ryle (27 September 1918 – 14 October 1984) was an English radio astronomer who developed revolutionary radio telescope systems (see e.g. aperture synthesis) and used them for accurate location and imaging of weak radio source ...
and Australian engineer, radiophysicist, and radio astronomer
Joseph Lade Pawsey Joseph Lade Pawsey (14 May 1908 – 30 November 1962) was an Australian scientist, radiophysicist and radio astronomer. Education Pawsey was born in Ararat, Victoria to a family of farmers. At the age of 14 he was awarded a government schol ...
and
Ruby Payne-Scott Ruby Violet Payne-Scott, BSc (Phys) MSc DipEd (Syd) (28 May 1912 – 25 May 1981) was an Australian pioneer in radiophysics and radio astronomy, and was one of two Antipodean women pioneers in radio astronomy and radio physics at the end of the ...
in 1946. The first use of a radio interferometer for an astronomical observation was carried out by Payne-Scott, Pawsey and
Lindsay McCready Lindsay may refer to: People *Clan Lindsay, a Scottish family clan *Lindsay (name), an English surname and given name, derived from the Scottish clan name; variants include Lindsey, Lyndsay, Linsay, Linsey, Lyndsey, Lyndsy, Lynsay, Lynsey Places ...
on 26 January 1946 using a ''single'' converted radar antenna (broadside array) at 200 MHz near
Sydney, Australia Sydney ( ) is the capital city of the States and territories of Australia, state of New South Wales, and the most populous city in both Australia and List of cities in Oceania by population, Oceania. Located on Australia's east coast, the metro ...
. This group used the principle of a sea-cliff interferometer in which the antenna (formerly a World War II radar) observed the Sun at sunrise with interference arising from the direct radiation from the Sun and the reflected radiation from the sea. With this baseline of almost 200 meters, the authors determined that the solar radiation during the burst phase was much smaller than the solar disk and arose from a region associated with a large
sunspot Sunspots are phenomena on the Sun's photosphere that appear as temporary spots that are darker than the surrounding areas. They are regions of reduced surface temperature caused by concentrations of magnetic flux that inhibit convection. Sun ...
group. The Australia group laid out the principles of
aperture synthesis Aperture synthesis or synthesis imaging is a type of interferometry that mixes signals from a collection of telescopes to produce images having the same angular resolution as an instrument the size of the entire collection. At each separation an ...
in a ground-breaking paper published in 1947. The use of a sea-cliff
interferometer Interferometry is a technique which uses the ''interference'' of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber op ...
had been demonstrated by numerous groups in Australia, Iran and the UK during World War II, who had observed interference fringes (the direct radar return radiation and the reflected signal from the sea) from incoming aircraft. The Cambridge group of Ryle and Vonberg observed the Sun at 175 MHz for the first time in mid July 1946 with a Michelson interferometer consisting of two radio antennas with spacings of some tens of meters up to 240 meters. They showed that the radio radiation was smaller than 10 arc minutes in size and also detected circular polarization in the Type I bursts. Two other groups had also detected circular polarization at about the same time ( David Martyn in Australia and Edward Appleton with
James Stanley Hey James Stanley Hey (3 May 1909 – 27 February 2000) was an English physicist and radio astronomer. With the targeted application of radar technology for astronomical research, he laid the basis for the development of radio astronomy. While work ...
in the UK). Modern radio interferometers consist of widely separated radio telescopes observing the same object that are connected together using
coaxial cable Coaxial cable, or coax (pronounced ) is a type of electrical cable consisting of an inner conductor surrounded by a concentric conducting shield, with the two separated by a dielectric ( insulating material); many coaxial cables also have a p ...
,
waveguide A waveguide is a structure that guides waves, such as electromagnetic waves or sound, with minimal loss of energy by restricting the transmission of energy to one direction. Without the physical constraint of a waveguide, wave intensities de ...
,
optical fiber An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to ...
, or other type of
transmission line In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmis ...
. This not only increases the total signal collected, it can also be used in a process called
aperture synthesis Aperture synthesis or synthesis imaging is a type of interferometry that mixes signals from a collection of telescopes to produce images having the same angular resolution as an instrument the size of the entire collection. At each separation an ...
to vastly increase resolution. This technique works by superposing ("
interfering Interference is the act of interfering, invading, or poaching. Interference may also refer to: Communications * Interference (communication), anything which alters, modifies, or disrupts a message * Adjacent-channel interference, caused by extr ...
") the signal
wave In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (res ...
s from the different telescopes on the principle that
wave In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (res ...
s that coincide with the same
phase Phase or phases may refer to: Science *State of matter, or phase, one of the distinct forms in which matter can exist *Phase (matter), a region of space throughout which all physical properties are essentially uniform * Phase space, a mathematic ...
will add to each other while two waves that have opposite phases will cancel each other out. This creates a combined telescope that is the size of the antennas furthest apart in the array. In order to produce a high quality image, a large number of different separations between different telescopes are required (the projected separation between any two telescopes as seen from the radio source is called a "baseline") – as many different baselines as possible are required in order to get a good quality image. For example, the
Very Large Array The Karl G. Jansky Very Large Array (VLA) is a centimeter-wavelength radio astronomy observatory located in central New Mexico on the Plains of San Agustin, between the towns of Magdalena and Datil, ~ west of Socorro. The VLA comprises twen ...
has 27 telescopes giving 351 independent baselines at once.


Very-long-baseline interferometry

Beginning in the 1970s, improvements in the stability of radio telescope receivers permitted telescopes from all over the world (and even in Earth orbit) to be combined to perform
very-long-baseline interferometry Very-long-baseline interferometry (VLBI) is a type of astronomical interferometer, astronomical interferometry used in radio astronomy. In VLBI a signal from an astronomical radio source, such as a quasar, is collected at multiple radio telesco ...
. Instead of physically connecting the antennas, data received at each antenna is paired with timing information, usually from a local
atomic clock An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions betwee ...
, and then stored for later analysis on magnetic tape or hard disk. At that later time, the data is correlated with data from other antennas similarly recorded, to produce the resulting image. Using this method it is possible to synthesise an antenna that is effectively the size of the Earth. The large distances between the telescopes enable very high angular resolutions to be achieved, much greater in fact than in any other field of astronomy. At the highest frequencies, synthesised beams less than 1
milliarcsecond A minute of arc, arcminute (arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to of one degree. Since one degree is of a turn (or complete rotation), one minute of arc is of a turn. The na ...
are possible. The pre-eminent VLBI arrays operating today are the
Very Long Baseline Array The Very Long Baseline Array (VLBA) is a system of ten radio telescopes which are operated remotely from their Array Operations Center located in Socorro, New Mexico, as a part of the National Radio Astronomy Observatory (NRAO). These ten radi ...
(with telescopes located across North America) and the
European VLBI Network The European VLBI Network (EVN) is a network of radio telescopes located primarily in Europe and Asia, with additional antennas in South Africa and Puerto Rico, which performs very high angular resolution observations of cosmic radio sources usin ...
(telescopes in Europe, China, South Africa and Puerto Rico). Each array usually operates separately, but occasional projects are observed together producing increased sensitivity. This is referred to as Global VLBI. There are also a VLBI networks, operating in Australia and New Zealand called the LBA (Long Baseline Array), and arrays in Japan, China and South Korea which observe together to form the East-Asian VLBI Network (EAVN). Since its inception, recording data onto hard media was the only way to bring the data recorded at each telescope together for later correlation. However, the availability today of worldwide, high-bandwidth networks makes it possible to do VLBI in real time. This technique (referred to as e-VLBI) was originally pioneered in Japan, and more recently adopted in Australia and in Europe by the EVN (European VLBI Network) who perform an increasing number of scientific e-VLBI projects per year.


Astronomical sources

Radio astronomy has led to substantial increases in astronomical knowledge, particularly with the discovery of several classes of new objects, including
pulsar A pulsar (from ''pulsating radio source'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Ea ...
s,
quasar A quasar is an extremely Luminosity, luminous active galactic nucleus (AGN). It is pronounced , and sometimes known as a quasi-stellar object, abbreviated QSO. This emission from a galaxy nucleus is powered by a supermassive black hole with a m ...
s and
radio galaxies A radio galaxy is a galaxy with giant regions of radio emission extending well beyond its visible structure. These energetic radio lobes are powered by jets from its active galactic nucleus. They have luminosities up to 1039  W at radio wav ...
. This is because radio astronomy allows us to see things that are not detectable in optical astronomy. Such objects represent some of the most extreme and energetic physical processes in the universe. The
cosmic microwave background radiation In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
was also first detected using radio telescopes. However, radio telescopes have also been used to investigate objects much closer to home, including observations of the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
and solar activity, and radar mapping of the
planets A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a young ...
. Other sources include: *
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
*
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but ...
*
Sagittarius A Sagittarius A (Sgr A) is a complex radio source at the center of the Milky Way, which contains a supermassive black hole. It is located in the constellation Sagittarius, and is hidden from view at optical wavelengths by large clouds of ...
, the
Galactic Center The Galactic Center or Galactic Centre is the rotational center, the barycenter, of the Milky Way galaxy. Its central massive object is a supermassive black hole of about 4 million solar masses, which is called Sagittarius A*, a compact rad ...
of the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye ...
, with one portion
Sagittarius A* Sagittarius A* ( ), abbreviated Sgr A* ( ), is the supermassive black hole at the Galactic Center of the Milky Way. It is located near the border of the constellations Sagittarius and Scorpius, about 5.6° south of the ecliptic, vi ...
thought to be a radio wave emitting
supermassive black hole A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions of times the mass of the Sun (). Black holes are a class of astronomical obj ...
*
Active galactic nuclei An active galactic nucleus (AGN) is a compact region at the center of a galaxy that has a much-higher-than-normal luminosity over at least some portion of the electromagnetic spectrum with characteristics indicating that the luminosity is not prod ...
and
pulsar A pulsar (from ''pulsating radio source'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Ea ...
s have jets of charged particles which emit
synchrotron radiation Synchrotron radiation (also known as magnetobremsstrahlung radiation) is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity (). It is produced artificially in ...
* Merging
galaxy cluster A galaxy cluster, or a cluster of galaxies, is a structure that consists of anywhere from hundreds to thousands of galaxies that are bound together by gravity, with typical masses ranging from 1014 to 1015 solar masses. They are the second-l ...
s often show diffuse radio emission *
Supernova remnant A supernova remnant (SNR) is the structure resulting from the explosion of a star in a supernova. The supernova remnant is bounded by an expanding shock wave, and consists of ejected material expanding from the explosion, and the interstellar mat ...
s can also show diffuse radio emission;
pulsar A pulsar (from ''pulsating radio source'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Ea ...
s are a type of supernova remnant that shows highly synchronous emission. * The
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
is
blackbody A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The name "black body" is given because it absorbs all colors of light. A black body ...
radio/microwave emission


International regulation

Radio astronomy service (also: ''radio astronomy radiocommunication service'') is, according to Article 1.58 of the International Telecommunication Union's (ITU)
Radio Regulations Radio regulation refers to the regulation and licensing of radio in international law, by individual governments, and by municipalities. International regulation The International Telecommunication Union (ITU) is a specialized agency of the Unit ...
(RR), defined as "A
radiocommunication service Radio communication service or radiocommunication service is according to Article 1.19 of the International Telecommunication Union's Radio Regulations (ITU RR),ITU Radio Regulations, Section III – Radio services, Article 1.19, definition: Ra ...
involving the use of radio astronomy". Subject of this radiocommunication service is to receive
radio wave Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz (GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (short ...
s transmitted by
astronomical Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, galaxies ...
or celestial objects.


Frequency allocation

The allocation of radio frequencies is provided according to ''Article 5'' of the ITU Radio Regulations (edition 2012).''ITU Radio Regulations, CHAPTER II – Frequencies, ARTICLE 5 Frequency allocations, Section IV – Table of Frequency Allocations'' In order to improve harmonisation in spectrum utilisation, the majority of service-allocations stipulated in this document were incorporated in national Tables of Frequency Allocations and Utilisations which is with-in the responsibility of the appropriate national administration. The allocation might be primary, secondary, exclusive, and shared. *primary allocation: is indicated by writing in capital letters (see example below) *secondary allocation: is indicated by small letters *exclusive or shared utilization: is within the responsibility of administrations In line to the appropriate
ITU Region The International Telecommunication Union (ITU), in its International Radio Regulations, divides the world into three ITU regions for the purposes of managing the global radio spectrum. Each region has its own set of frequency allocations, the ma ...
the frequency bands are allocated (primary or secondary) to the ''radio astronomy service'' as follows.


See also

*
Atacama Large Millimeter Array The Atacama Large Millimeter/submillimeter Array (ALMA) is an astronomical interferometer of 66 radio telescopes in the Atacama Desert of northern Chile, which observe electromagnetic radiation at millimeter and submillimeter wavelengths. The a ...
*
Channel 37 Channel 37 is an intentionally unused ultra-high frequency (UHF) television broadcasting channel by countries in most of ITU region 2 such as the United States, Canada, Mexico and Brazil. The frequency range allocated to this channel is important f ...
*
Gamma-ray astronomy Gamma-ray astronomy is the astronomical observation of gamma rays,Astronomical literature generally hyphenates "gamma-ray" when used as an adjective, but uses "gamma ray" without a hyphen for the noun. the most energetic form of electromagneti ...
*
Infrared astronomy Infrared astronomy is a sub-discipline of astronomy which specializes in the observation and analysis of astronomical objects using infrared (IR) radiation. The wavelength of infrared light ranges from 0.75 to 300 micrometers, and falls in betwee ...
*
Radar astronomy Radar astronomy is a technique of observing nearby astronomical objects by reflecting radio waves or microwaves off target objects and analyzing their reflections. Radar astronomy differs from ''radio astronomy'' in that the latter is a passive o ...
*
Time smearing Time smearing or time-average smearing is the degradation of the reconstructed image of a celestial body observed by a ground-based interferometer that occurs because of the duration of the observation. Unlike single telescopes or cameras that ...
* X-ray astronomy * Waves (''Juno'') (radio instrument on the ''Juno'' Jupiter orbiter) *
Radio Galaxy Zoo Radio Galaxy Zoo (RGZ) is an internet crowdsourced citizen science project that seeks to locate supermassive black holes in distant galaxies. It is hosted by the web portal Zooniverse. The scientific team want to identify black hole/jet pairs an ...
* Würzburg radar#Post-war use in astronomy


References


Further reading

; Journals * * ; Books * Bruno Bertotti (ed.), ''Modern Cosmology in Retrospect''. Cambridge University Press 1990. * James J. Condon, et al.: ''Essential Radio Astronomy.'' Princeton University Press, Princeton 2016, . * Robin Michael Green, ''Spherical Astronomy''. Cambridge University Press, 1985. * Raymond Haynes, Roslynn Haynes, and Richard McGee, ''Explorers of the Southern Sky: A History of Australian Astronomy''. Cambridge University Press 1996. * J.S. Hey, ''The Evolution of Radio Astronomy.'' Neale Watson Academic, 1973. * David L. Jauncey, ''Radio Astronomy and Cosmology.'' Springer 1977. *
Roger Clifton Jennison Roger Clifton Jennison (18 December 1922 – 29 December 2006) worked as a radio astronomer at Jodrell Bank under the guidance of Robert Hanbury Brown. Jennison made a number of discoveries in the field of radio astronomy, including the discovery ...
, ''Introduction to Radio Astronomy''. 1967. * Albrecht Krüger, ''Introduction to Solar Radio Astronomy and Radio Physics.'' Springer 1979. * David P.D. Munns, ''A Single Sky: How an International Community Forged the Science of Radio Astronomy.'' Cambridge, MA: MIT Press, 2013. * Allan A. Needell, ''Science, Cold War and American State: Lloyd V. Berkner and the Balance of Professional Ideals''. Routledge, 2000. * Joseph Lade Pawsey and Ronald Newbold Bracewell, ''Radio Astronomy.'' Clarendon Press, 1955. * Kristen Rohlfs, Thomas L Wilson, ''Tools of Radio Astronomy''. Springer 2003. * D.T. Wilkinson and P.J.E. Peebles, ''Serendipitous Discoveries in Radio Astronomy.'' Green Bank, WV: National Radio Astronomy Observatory, 1983. * Woodruff T. Sullivan III, ''The Early Years of Radio Astronomy: Reflections Fifty Years after Jansky's Discovery.'' Cambridge, England: Cambridge University Press, 1984. * Woodruff T. Sullivan III, ''Cosmic Noise: A History of Early Radio Astronomy.'' Cambridge University Press, 2009. * Woodruff T. Sullivan III, ''Classics in Radio Astronomy''. Reidel Publishing Company, Dordrecht, 1982.


External links


nrao.edu National Radio Astronomy Observatory






– a brief history from
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeeding t ...
Goddard Space Flight Center The Goddard Space Flight Center (GSFC) is a major NASA space research laboratory located approximately northeast of Washington, D.C. in Greenbelt, Maryland, United States. Established on May 1, 1959 as NASA's first space flight center, GSFC empl ...

Society of Amateur Radio Astronomers



UnwantedEmissions.com A general reference for radio spectrum allocations, including radio astronomy.



What is Radio Astronomy
– Radioastrolab {{DEFAULTSORT:Radio Astronomy Observational astronomy Astronomical imaging Astronomical sub-disciplines